Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Answer:
The magnitude of the boat's velocity is 8.21 km/h.
Explanation:
We can find the boat's velocity as follows:
[tex] \Epsilon V_{x} = V_{w_{x}} + V_{b_{y}} [/tex]
[tex] \Epsilon V_{y} = V_{w_{y}} + V_{b_{y}} [/tex]
Where:
[tex]V_{w_{x}}[/tex] and [tex]V_{w_{y}}[/tex] are the components of the velocity of the water in the x and y-direction
[tex]V_{b_{x}}[/tex] and [tex]V_{b_{y}}[/tex] are the components of the velocity of the boat in the x and y-direction
Since the angle is 15° we have:
[tex] \Epsilon V_{x} = -4.0 km/h*sin(15) + 0 = -1.04 km/h [/tex]
[tex] \Epsilon V_{y} = 4.0 km/h*cos(15) - 12.0 km/h = -8.14 km/h [/tex]
Now, the velocity of the boat is:
[tex] V = \sqrt{V_{x}^{2} + V_{y}^{2}} = \sqrt{(-1.04 km/h)^{2} + (-8.14 km/h)^{2}} = 8.21 km/h [/tex]
Therefore, the magnitude of the boat's velocity is 8.21 km/h.
I hope it helps you!
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.