At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Which of the following geometric series converges?

Which Of The Following Geometric Series Converges class=

Sagot :

All three series converge, so the answer is D.
The common ratios for each sequence are (I) -1/9, (II) -1/10, and (III) -1/3.
Consider a geometric sequence with the first term a and common ratio |r| < 1. Then the n-th partial sum (the sum of the first n terms) of the sequence is

Multiply both sides by r :

Subtract the latter sum from the first, which eliminates all but the first and last terms:

Solve for :

Then as gets arbitrarily large, the term will converge to 0, leaving us with

So the given series converge to
(I) -243/(1 + 1/9) = -2187/10
(II) -1.1/(1 + 1/10) = -1
(III) 27/(1 + 1/3) = 18