Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
the moment of inertia is 4.5 × 10⁻⁵ kg.m²
Explanation:
Given that;
point mass m = 0.005 g = ( 0.005 / 1000 ) = 5 × 10⁻⁶ kg
perpendicular distance r = 3m
We know that a point mass doesn't have a moment of inertia around its own axis but, but using the parallel axis theorem, a moment of inertia around a distant axis of rotation can be determined using;
[tex]I_{}[/tex] = mr²
so we substitute
[tex]I_{}[/tex] = (5 × 10⁻⁶ kg) × (3 m)²
[tex]I_{}[/tex] = (5 × 10⁻⁶ kg) × 9 m²
[tex]I_{}[/tex] = 4.5 × 10⁻⁵ kg.m²
Therefore; the moment of inertia is 4.5 × 10⁻⁵ kg.m²
The moment of inertia of given point mass is 4.5 × 10⁻⁵ kgm² at a perpendicular distance of 3 m.
The moment of inertia of given point mass can be determined by,
[tex]I = mr^2[/tex]
Where,
[tex]I[/tex]- moment of inertia
[tex]m[/tex]- mass = 0.005 g = ( 0.005 / 1000 ) = 5 × 10⁻⁶ kg
[tex]r[/tex] - perpendicular distance = 3 m
Put the values in the formula,
[tex]I = (5 \times 10^{-6}{\rm \ kg}) \times (3 {\rm \ m})^2\\\\I = 5 \times 10^{-6}{\rm \ kg} \times 9 {\rm \ m}\\\\I = 4.5 \times 10^{-5} kgm^2[/tex]
Therefore; the moment of inertia of given point mass is 4.5 × 10⁻⁵ kgm².
To know more about moment of inertia,
https://brainly.com/question/6953943
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.