Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Suppose I randomly choose 4 distinct integers between 1 and 60. Is it true, or is it not true, that at least 2 of them must differ by no more than 19.

Sagot :

Answer:

It’s true

Step-by-step explanation:

Proof by induction

Let the four chosen numbers be x_1, … x_4 and, without loss of generality, let x_1 < x_2, … < x_4.

For x_1 = 1, the smallest possible choice, let x_2 = x_1 + 20 = 21 be the smallest possible choice that has a difference larger than 19. Likewise, x_3 = x_2 + 20 = x_1 + 40 = 41. Then x_4 has to be at least x_3 + 20 = x_1 + 60 = 61 which is out of range.

For the induction, suppose that x_4(n) = x_1(n) + 60 > 60 and therefore x_4(n) can’t be chosen for a given x_1(n). Then incrementing x_1(n+1) = x_1(n) + 1 would require x_4(n+1) to be at least x_1(n) + 1 + 60 = x_4(n) + 1 > 61, so this is out of range as well.

For another induction, suppose that x_4(n) = x_2(n) + 40 > 60 and therefore x_4(n) can’t be chosen for a given x_2(n). Then incrementing x_2(n+1) = x_2(n) + 1 would require x_4(n+1) to be at least x_2(n+1) + 40 = x_4(n) + 1 > 61, so this is out of range as well.

Likewise, for the induction, suppose that x_4(n) = x_3(n) + 20 > 60 and therefore x_4(n) can’t be chosen for a given x_3(n). Then incrementing x_3(n+1) = x_3(n) + 1 would require x_4(n+1) to be at least x_3(n+1) + 20 = x_4(n) + 1 > 61, so this is out of range as well.

Therefore all choices of x_1, x_2, x_3 with differences greater than 19 leaves no choice of x_4 within range with x_4 > x_3 + 19.

We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.