Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Write an explicit formula for the An, and the n^th term of the sequence 24,-12,6,....

Sagot :

Answer:

[tex]T_n = -48* (-\frac{1}{2})^{n}[/tex]

Step-by-step explanation:

Given

[tex]24, -12, 6,...[/tex]

Required

Write a formula

The above sequence shows a geometric sequence because:

[tex]r = \frac{-12}{24} = \frac{6}{-12} = -\frac{1}{2}[/tex] -- common ratio

The equation is determined using:

[tex]T_n = ar^{n-1}[/tex]

Where

[tex]a = 24[/tex]

Substitute values for a and r

[tex]T_n = 24* (-\frac{1}{2})^{n-1}[/tex]

Apply law of indices:

[tex]T_n = 24* (-\frac{1}{2})^{n} * (-\frac{1}{2})^{-1}[/tex]

[tex]T_n = 24* (-\frac{1}{2})^{n} * 1/(-\frac{1}{2})[/tex]

[tex]T_n = 24* (-\frac{1}{2})^{n} * 1*-2[/tex]

[tex]T_n = 1*-2*24* (-\frac{1}{2})^{n}[/tex]

[tex]T_n = -48* (-\frac{1}{2})^{n}[/tex]

The above represents the explicit formula

Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.