Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Using the hypergeometric distribution, it is found that the probability is 12/132
------------------------------------
The rolls are chosen from a sample without replacement, which means that the hypergeometric distribution is used to solve this question.
------------------------------------
Hypergeometric distribution:
The probability of x successes is given by the following formula:
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
In which:
x is the number of successes.
N is the size of the population.
n is the size of the sample.
k is the total number of desired outcomes.
Combinations formula:
[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
------------------------------------
- 12 rolls means that [tex]N = 12[/tex]
- 4 defective means that [tex]k = 4[/tex]
- 2 are chosen, which means that [tex]n = 2[/tex]
------------------------------------
What is the probability of selecting two defective rolls?
This is P(X = 2). So
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
[tex]P(X = 2) = h(2,12,2,4) = \frac{C_{4,2}*C_{8,0}}{C_{12,2}} = \frac{4 \times 3}{12 \times 11} = \frac{12}{132}[/tex]
12/132 is the probability.
A similar problem is found at https://brainly.com/question/24229905
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.