Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

In ΔABC, a = 660 cm, b = 680 cm and c=100 cm. Find the measure of ∠B to the nearest degree.

Sagot :

Answer:

m∠B = [tex]97^{o}[/tex].

Step-by-step explanation:

Since the three sides of the triangle are given, then we apply cosine rule.

[tex]b^{2}[/tex] = [tex]a^{2}[/tex] + [tex]c^{2}[/tex] - 2ac Cos B

But, a = 660 cm, b = 680 cm, and c = 100 cm.

So that;

[tex]680^{2}[/tex] = [tex]660^{2}[/tex] + [tex]100^{2}[/tex] -2(660 x 100) Cos B

462400 = 435600 + 10000 - 132000 Cos B

462400 = 445600 - 132000 Cos B

132000 Cos B = 445600 - 462400

                        = -16800

Cos B = [tex]\frac{-16800}{132000}[/tex]

         = -0.1273

B = [tex]Cos^{-1}[/tex] -0.1273

  = [tex]97^{o}[/tex]

Thus, measure of ∠B is [tex]97^{o}[/tex].

Answer:

M∠B = 97 degrees

Step-by-step explanation:

Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.