Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
a.)Q' = -kQ + r
b.)Q = [tex]\frac{r}{k} [ 1 - e^{-kt} ][/tex]
c.) Limiting long run value of Q = [tex]\frac{r}{k}[/tex]
Step-by-step explanation:
a.)
The rate of change is directly proportional to the quantity, Q
⇒[tex]\frac{dQ}{dt}[/tex] ∝ Q
⇒[tex]\frac{dQ}{dt}[/tex] = -kQ ( because it is decreasing )
Also given, quantity is increasing with a constant rate r
⇒[tex]\frac{dQ}{dt}[/tex] = -kQ + r
⇒Q' = -kQ + r
b.)
As we have
[tex]\frac{dQ}{dt}[/tex] = -kQ + r
⇒[tex]\frac{dQ}{-kQ + r}[/tex] = dt
⇒∫[tex]\frac{dQ}{-kQ + r}[/tex] = ∫dt
⇒-[tex]\frac{1}{k}log(-kQ + r) = t + C[/tex]
⇒log(-kQ + r) = -kt -kC
Taking exponential both side, we get
⇒-kQ + r = [tex]e^{-kt +A}[/tex]
⇒-kQ = -r + [tex]e^{-kt +A}[/tex]
⇒Q = [tex]\frac{r}{k}[/tex] - [tex]\frac{1}{k}[/tex][tex]e^{-kt +A}[/tex]
⇒Q = [tex]\frac{r}{k}[/tex] - [tex]\frac{1}{k}[/tex][tex]e^{-kt}.e^{A}[/tex]
⇒Q = [tex]\frac{r}{k}[/tex] - [tex]\frac{1}{k}[/tex][tex]Be^{-kt}[/tex] .......(1)
Now,
At t = 0, Q = 0
0 = [tex]\frac{r}{k}[/tex] - [tex]\frac{1}{k}[/tex]B
⇒[tex]\frac{1}{k}B = \frac{r}{k}[/tex]
⇒B = r
∴ equation (1) becomes
Q = [tex]\frac{r}{k}[/tex] - [tex]\frac{r}{k}[/tex][tex]e^{-kt}[/tex]
⇒Q = [tex]\frac{r}{k} [ 1 - e^{-kt} ][/tex]
c.)
for limiting long run value of Q
[tex]\lim_{n \to \infty} Q = \lim_{n \to \infty}[/tex] [tex]\frac{r}{k} [ 1 - e^{-kt} ][/tex]
= [tex]\frac{r}{k}[/tex][tex]\lim_{n \to \infty} [ 1 - e^{-kt} ]= \frac{r}{k} [ 1 - e^{\infty} ] = \frac{r}{k}[ 1-0][/tex]
= [tex]\frac{r}{k}[/tex]
⇒Limiting long run value of Q = [tex]\frac{r}{k}[/tex]
Q' = -kQ + r
Q = r/k (1- [tex]\rm e^{-kt}[/tex])
The limiting long-run value of Q = [tex]\rm \frac{r}{k}[/tex]
A drug is administered intravenously at a constant rate of r mg/hour and is excreted at a rate proportional to the quantity present, with a constant of proportionality k > 0.
What is a differential equation?
The differential equation is an equation that contains the derivative of the unknown function.
a) It is given that the rate of change is directly proportional to the quantity Q
[tex]\rm \frac{dQ}{dt}[/tex] ∝ Q
[tex]\rm \frac{dQ}{dt}[/tex] = -kQ
So, Q' = -kQ + r
where quantity Q is increasing with constant rate r and k is unknown constant.
b) Q' = -kQ + r
[tex]\rm \frac{dQ}{dt}[/tex] = -kQ + r
[tex]\rm \frac{dQ}{-kQ+r}=dt\\[/tex]
[tex]\int\limits {\rm \frac{dQ}{-kQ+r} = \int\limits dt[/tex]
log(-kQ + r) = -kt -kC
by taking exponential both side, we get
-kQ + r = [tex]e^{-kt+A}[/tex]
-kQ = -r + [tex]e^{-kt+A}[/tex]
-Q /k= -r/k + [tex]e^{-kt+A}[/tex]/k
Q = -r/k -[tex]\rm \frac{1}{k}Be^{-kt}[/tex]
At t = 0, Q = 0
[tex]\rm \frac{1}{k} B=\frac{r}{k}[/tex]
B = r
by substituting the value in the above equation
Q = r/k (1- [tex]\rm e^{-kt}[/tex])
c) The limiting long-run value of Q
[tex]\rm \lim_{n \to \infty} Q= \lim_{n \to \infty} \frac{r}{k} [1-e^{-kt} ]\\\rm= \frac{r}{k}\lim_{n \to \infty} [1-e^{-kt} ]\\\rm =\frac{r}{k}[1-0]\\\rm=\frac{r}{k}[/tex]
The value Q =[tex]\rm \frac{r}{k}[/tex]
Learn more about differential equations here:
https://brainly.com/question/25731911
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.