At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
a.)Q' = -kQ + r
b.)Q = [tex]\frac{r}{k} [ 1 - e^{-kt} ][/tex]
c.) Limiting long run value of Q = [tex]\frac{r}{k}[/tex]
Step-by-step explanation:
a.)
The rate of change is directly proportional to the quantity, Q
⇒[tex]\frac{dQ}{dt}[/tex] ∝ Q
⇒[tex]\frac{dQ}{dt}[/tex] = -kQ ( because it is decreasing )
Also given, quantity is increasing with a constant rate r
⇒[tex]\frac{dQ}{dt}[/tex] = -kQ + r
⇒Q' = -kQ + r
b.)
As we have
[tex]\frac{dQ}{dt}[/tex] = -kQ + r
⇒[tex]\frac{dQ}{-kQ + r}[/tex] = dt
⇒∫[tex]\frac{dQ}{-kQ + r}[/tex] = ∫dt
⇒-[tex]\frac{1}{k}log(-kQ + r) = t + C[/tex]
⇒log(-kQ + r) = -kt -kC
Taking exponential both side, we get
⇒-kQ + r = [tex]e^{-kt +A}[/tex]
⇒-kQ = -r + [tex]e^{-kt +A}[/tex]
⇒Q = [tex]\frac{r}{k}[/tex] - [tex]\frac{1}{k}[/tex][tex]e^{-kt +A}[/tex]
⇒Q = [tex]\frac{r}{k}[/tex] - [tex]\frac{1}{k}[/tex][tex]e^{-kt}.e^{A}[/tex]
⇒Q = [tex]\frac{r}{k}[/tex] - [tex]\frac{1}{k}[/tex][tex]Be^{-kt}[/tex] .......(1)
Now,
At t = 0, Q = 0
0 = [tex]\frac{r}{k}[/tex] - [tex]\frac{1}{k}[/tex]B
⇒[tex]\frac{1}{k}B = \frac{r}{k}[/tex]
⇒B = r
∴ equation (1) becomes
Q = [tex]\frac{r}{k}[/tex] - [tex]\frac{r}{k}[/tex][tex]e^{-kt}[/tex]
⇒Q = [tex]\frac{r}{k} [ 1 - e^{-kt} ][/tex]
c.)
for limiting long run value of Q
[tex]\lim_{n \to \infty} Q = \lim_{n \to \infty}[/tex] [tex]\frac{r}{k} [ 1 - e^{-kt} ][/tex]
= [tex]\frac{r}{k}[/tex][tex]\lim_{n \to \infty} [ 1 - e^{-kt} ]= \frac{r}{k} [ 1 - e^{\infty} ] = \frac{r}{k}[ 1-0][/tex]
= [tex]\frac{r}{k}[/tex]
⇒Limiting long run value of Q = [tex]\frac{r}{k}[/tex]
Q' = -kQ + r
Q = r/k (1- [tex]\rm e^{-kt}[/tex])
The limiting long-run value of Q = [tex]\rm \frac{r}{k}[/tex]
A drug is administered intravenously at a constant rate of r mg/hour and is excreted at a rate proportional to the quantity present, with a constant of proportionality k > 0.
What is a differential equation?
The differential equation is an equation that contains the derivative of the unknown function.
a) It is given that the rate of change is directly proportional to the quantity Q
[tex]\rm \frac{dQ}{dt}[/tex] ∝ Q
[tex]\rm \frac{dQ}{dt}[/tex] = -kQ
So, Q' = -kQ + r
where quantity Q is increasing with constant rate r and k is unknown constant.
b) Q' = -kQ + r
[tex]\rm \frac{dQ}{dt}[/tex] = -kQ + r
[tex]\rm \frac{dQ}{-kQ+r}=dt\\[/tex]
[tex]\int\limits {\rm \frac{dQ}{-kQ+r} = \int\limits dt[/tex]
log(-kQ + r) = -kt -kC
by taking exponential both side, we get
-kQ + r = [tex]e^{-kt+A}[/tex]
-kQ = -r + [tex]e^{-kt+A}[/tex]
-Q /k= -r/k + [tex]e^{-kt+A}[/tex]/k
Q = -r/k -[tex]\rm \frac{1}{k}Be^{-kt}[/tex]
At t = 0, Q = 0
[tex]\rm \frac{1}{k} B=\frac{r}{k}[/tex]
B = r
by substituting the value in the above equation
Q = r/k (1- [tex]\rm e^{-kt}[/tex])
c) The limiting long-run value of Q
[tex]\rm \lim_{n \to \infty} Q= \lim_{n \to \infty} \frac{r}{k} [1-e^{-kt} ]\\\rm= \frac{r}{k}\lim_{n \to \infty} [1-e^{-kt} ]\\\rm =\frac{r}{k}[1-0]\\\rm=\frac{r}{k}[/tex]
The value Q =[tex]\rm \frac{r}{k}[/tex]
Learn more about differential equations here:
https://brainly.com/question/25731911
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.