Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Answer:
0.6568 = 65.68% probability that she would be correct.
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
45000, 45500, 44500, 46000 and 44000 units. This rate of sales is considered average for the product over the last twenty years or so.
This means that:
[tex]\mu = \frac{45000 + 45500 + 44500 + 46000 + 44000}{5} = 45000[/tex]
Standard deviation of 1500 units.
This means that [tex]\sigma = 1500[/tex]
What is the likelihood that she would be correct if she predicts sales between 43000 and 46000?
This is the pvalue of Z when X = 46000 subtracted by the pvalue of Z when X = 43000. So
X = 46000
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{46000 - 45000}{1500}[/tex]
[tex]Z = 0.67[/tex]
[tex]Z = 0.67[/tex] has a pvalue of 0.7486
X = 43000
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{43000 - 45000}{1500}[/tex]
[tex]Z = -1.33[/tex]
[tex]Z = -1.33[/tex] has a pvalue of 0.0918
0.7486 - 0.0918 = 0.6568
0.6568 = 65.68% probability that she would be correct.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.