Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
x4)-(2•(x3)))-32x2)+18x
STEP
2
:
Equation at the end of step
2
:
(((x4) - 2x3) - 32x2) + 18x
STEP
3
:
STEP
4
:
Pulling out like terms
4.1 Pull out like factors :
x4 - 2x3 - 9x2 + 18x =
x • (x3 - 2x2 - 9x + 18)
Checking for a perfect cube :
4.2 x3 - 2x2 - 9x + 18 is not a perfect cube
Trying to factor by pulling out :
4.3 Factoring: x3 - 2x2 - 9x + 18
Thoughtfully split the expression at hand into groups, each group having two terms :
Group 1: -9x + 18
Group 2: x3 - 2x2
Pull out from each group separately :
Group 1: (x - 2) • (-9)
Group 2: (x - 2) • (x2)
-------------------
Add up the two groups :
(x - 2) • (x2 - 9)
Which is the desired factorization
Trying to factor as a Difference of Squares:
4.4 Factoring: x2 - 9
Theory : A difference of two perfect squares, A2 - B2 can be factored into (A+B) • (A-B)
Proof : (A+B) • (A-B) =
A2 - AB + BA - B2 =
A2 - AB + AB - B2 =
A2 - B2
Note : AB = BA is the commutative property of multiplication.
Note : - AB + AB equals zero and is therefore eliminated from the expression.
Check : 9 is the square of 3
Check : x2 is the square of x1
Factorization is : (x + 3) • (x - 3)
Final result :
x • (x + 3) • (x - 3) • (x - 2)
STEP
2
:
Equation at the end of step
2
:
(((x4) - 2x3) - 32x2) + 18x
STEP
3
:
STEP
4
:
Pulling out like terms
4.1 Pull out like factors :
x4 - 2x3 - 9x2 + 18x =
x • (x3 - 2x2 - 9x + 18)
Checking for a perfect cube :
4.2 x3 - 2x2 - 9x + 18 is not a perfect cube
Trying to factor by pulling out :
4.3 Factoring: x3 - 2x2 - 9x + 18
Thoughtfully split the expression at hand into groups, each group having two terms :
Group 1: -9x + 18
Group 2: x3 - 2x2
Pull out from each group separately :
Group 1: (x - 2) • (-9)
Group 2: (x - 2) • (x2)
-------------------
Add up the two groups :
(x - 2) • (x2 - 9)
Which is the desired factorization
Trying to factor as a Difference of Squares:
4.4 Factoring: x2 - 9
Theory : A difference of two perfect squares, A2 - B2 can be factored into (A+B) • (A-B)
Proof : (A+B) • (A-B) =
A2 - AB + BA - B2 =
A2 - AB + AB - B2 =
A2 - B2
Note : AB = BA is the commutative property of multiplication.
Note : - AB + AB equals zero and is therefore eliminated from the expression.
Check : 9 is the square of 3
Check : x2 is the square of x1
Factorization is : (x + 3) • (x - 3)
Final result :
x • (x + 3) • (x - 3) • (x - 2)
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.