Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
x4)-(2•(x3)))-32x2)+18x
STEP
2
:
Equation at the end of step
2
:
(((x4) - 2x3) - 32x2) + 18x
STEP
3
:
STEP
4
:
Pulling out like terms
4.1 Pull out like factors :
x4 - 2x3 - 9x2 + 18x =
x • (x3 - 2x2 - 9x + 18)
Checking for a perfect cube :
4.2 x3 - 2x2 - 9x + 18 is not a perfect cube
Trying to factor by pulling out :
4.3 Factoring: x3 - 2x2 - 9x + 18
Thoughtfully split the expression at hand into groups, each group having two terms :
Group 1: -9x + 18
Group 2: x3 - 2x2
Pull out from each group separately :
Group 1: (x - 2) • (-9)
Group 2: (x - 2) • (x2)
-------------------
Add up the two groups :
(x - 2) • (x2 - 9)
Which is the desired factorization
Trying to factor as a Difference of Squares:
4.4 Factoring: x2 - 9
Theory : A difference of two perfect squares, A2 - B2 can be factored into (A+B) • (A-B)
Proof : (A+B) • (A-B) =
A2 - AB + BA - B2 =
A2 - AB + AB - B2 =
A2 - B2
Note : AB = BA is the commutative property of multiplication.
Note : - AB + AB equals zero and is therefore eliminated from the expression.
Check : 9 is the square of 3
Check : x2 is the square of x1
Factorization is : (x + 3) • (x - 3)
Final result :
x • (x + 3) • (x - 3) • (x - 2)
STEP
2
:
Equation at the end of step
2
:
(((x4) - 2x3) - 32x2) + 18x
STEP
3
:
STEP
4
:
Pulling out like terms
4.1 Pull out like factors :
x4 - 2x3 - 9x2 + 18x =
x • (x3 - 2x2 - 9x + 18)
Checking for a perfect cube :
4.2 x3 - 2x2 - 9x + 18 is not a perfect cube
Trying to factor by pulling out :
4.3 Factoring: x3 - 2x2 - 9x + 18
Thoughtfully split the expression at hand into groups, each group having two terms :
Group 1: -9x + 18
Group 2: x3 - 2x2
Pull out from each group separately :
Group 1: (x - 2) • (-9)
Group 2: (x - 2) • (x2)
-------------------
Add up the two groups :
(x - 2) • (x2 - 9)
Which is the desired factorization
Trying to factor as a Difference of Squares:
4.4 Factoring: x2 - 9
Theory : A difference of two perfect squares, A2 - B2 can be factored into (A+B) • (A-B)
Proof : (A+B) • (A-B) =
A2 - AB + BA - B2 =
A2 - AB + AB - B2 =
A2 - B2
Note : AB = BA is the commutative property of multiplication.
Note : - AB + AB equals zero and is therefore eliminated from the expression.
Check : 9 is the square of 3
Check : x2 is the square of x1
Factorization is : (x + 3) • (x - 3)
Final result :
x • (x + 3) • (x - 3) • (x - 2)
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.