At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
t = 25.0 s
Explanation:
- Assuming that the engineer applies the brakes just over the crossing, the train moves exactly 350 m at a constant acceleration, with a final speed (when the last car of the train leaves the crossing) of 15.8km/h.
- Since we know the initial and final speeds, and the horizontal distance traveled (the length of the train) we can use the following kinematic equation to get the acceleration:
[tex]v_{f}^{2} - v_{o}^{2} = 2*a* \Delta x (1)[/tex]
- Since we need to find the time in seconds, it is advisable to convert vf and vo to m/s first, as follows:
[tex]v_{o} = 84.1 km/h*\frac{1h}{3600s} *\frac{1000m}{1km} = 23.4 m/s (2)[/tex]
[tex]v_{f} = 15.8 km/h*\frac{1h}{3600s} *\frac{1000m}{1km} = 4.4 m/s (3)[/tex]
- Replacing (2) and (3) in (1), since Δx =350m, we can solving for a:
[tex]a = \frac{(4.4m/s)^{2} - (23.4m/s)^{2}}{2*350m} = -0.76 m/s2 (4)[/tex]
- In order to get the time, we can simply use the definition of acceleration, and rearrange terms:
[tex]t =\frac{v_{f}-v_{o}}{a} = \frac{(4.4m/s)-(23.4m/s)}{-0.76m/s2} = 25.0 s (5)[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.