Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
[tex]3.029\ \text{m/s}[/tex]
Explanation:
m = Mass of pendulum = 1 kg
L = Length of pendulum = 2 m
g = Acceleration due to gravity = [tex]9.8\ \text{m/s}^2[/tex]
h = Height of the pendulum = 0.468 m
[tex]\theta[/tex] = Angle of deflection = [tex]-40^{\circ}[/tex]
[tex]\cos\theta=\dfrac{L-h}{L}\\\Rightarrow h=L-L\cos\theta\\\Rightarrow h=L(1-\cos\theta)\\\Rightarrow h=2(1-\cos(-40))=0.468\ \text{m}[/tex]
The energy balance of the pendulum is as follows
[tex]mgh=\dfrac{1}{2}mv^2\\\Rightarrow v=\sqrt{2gh}\\\Rightarrow v=\sqrt{2\times 9.8\times 0.468}\\\Rightarrow v=3.029\ \text{m/s}[/tex]
The maximum velocity of this pendulum is [tex]3.029\ \text{m/s}[/tex].
Answer:
Max velocity = 3.03 m/s
Explanation:
Mgh = ½ mv2
(1 kg)(9.8 m/s2)(0.468 m) = ½ (1 kg) v2
2 x 4.5864 = ½ v2 x 2
√V2 = √9.1728
V = 3.03 m/s
I hope this helps!
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.