Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer:
[tex]P(X\ge 1) = 0.9502[/tex]
Explanation:
Given
Density = 3 starts in 10 cubic light years.
Required
Determine the probability of 1 or more in 10 cubic light years
Since the number of stars follow a Poisson distribution, we make use of:
[tex]P(X=k) = f(x) = (\lambda T)^k\frac{ e^{-\lambda T}}{k!}[/tex]
[tex]\lambda = density[/tex]
[tex]\lambda = \frac{3}{10}[/tex]
[tex]\lambda = 0.3[/tex]
T = the light years
[tex]T = 10[/tex]
Calculating [tex]P(X \ge 1)[/tex]
In probability:
[tex]P(X \ge 1) = 1 - P(X = 0)[/tex]
Calculating P(X=0)
Substitute 0 for k and the values for [tex]\lambda[/tex] and T in
[tex]P(X=k) = f(x) = (\lambda T)^k\frac{ e^{-\lambda T}}{k!}[/tex]
[tex]P(X=0) = (0.3* 10)^0 * \frac{ e^{-0.3 * 10}}{0!}[/tex]
[tex]P(X=0) = (3)^0 * \frac{ e^{-0.3 * 10}}{1}[/tex]
[tex]P(X=0) = (3)^0 * e^{-0.3 * 10}[/tex]
[tex]P(X=0) = 1 * e^{-0.3 * 10}[/tex]
[tex]P(X=0) = 1 * e^{-3}[/tex]
[tex]P(X=0) = e^{-3}[/tex]
[tex]P(X=0) = 0.04979[/tex]
Substitute 0.04979 for P(X=0) in [tex]P(X \ge 1) = 1 - P(X = 0)[/tex]
[tex]P(X\ge 1) = 1 - 0.04979[/tex]
[tex]P(X\ge 1) = 0.95021[/tex]
[tex]P(X\ge 1) = 0.9502[/tex] --- approximated
Hence, the required probability is 0.9502
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.