Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
[tex]F_N>F_N'[/tex]
Explanation:
From the question we are told that
Radius of curvature[tex]r=100m[/tex]
Mass [tex]M=300kg[/tex]
initial Speed of Motorcycle [tex]V_1=30m/s[/tex]
Final Speed of Motorcycle [tex]V_2=33m/s[/tex]
Generally the equation Force at initial speed is mathematically given as
[tex]F_N=mg-\frac{mv^2}{R}[/tex]
[tex]F_N=300*9.8-\frac{(300*30)^2}{100}[/tex]
[tex]F_N=240N[/tex]
Generally the equation Force at Final speed is mathematically given as
[tex]F_N'=mg-\frac{mv'^2}{R}[/tex]
[tex]F_N'=300*9.8-\frac{(300*33)^2}{100}[/tex]
[tex]F_N'=-327N[/tex]
Therefore
[tex]F_N>F_N'[/tex]
Following are the calculation to the given question:
Solution:
Using formula:
[tex]\to mg - F^{'}_N=\frac{mv^{2}}{R} \\[/tex]
Calculating the Initial value:
[tex]\to F_N = mg - \frac{mv^2}{R}\\\\[/tex]
[tex]= 300 \times (9.8 - \frac{(30)^2}{100}) \\\\= 300 \times (9.8 - \frac{900}{100}) \\\\= 300 \times (9.8 - 9) \\\\= 300 \times (0.8) \\\\ = 240\ N \\\\[/tex]
Calculating the Final value:
[tex]\to F^{'}_{N}= 300 (9.8 -\frac{33^2}{100})\\\\[/tex]
[tex]= 300 (9.8 -\frac{1089}{100})\\\\= 300 (9.8 - 10.89)\\\\= 300 (- 1.09)\\\\=-327[/tex]
Therefore, the answer is "the new normal force is less than [tex]F_{N}[/tex]" or [tex]\bold{F^{'}_{N}< F_{N}}[/tex].
Learn more:
brainly.com/question/12910909
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.