At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
The manager can select a team in 61425 ways.
Step-by-step explanation:
The order in which the cashiers and the kitchen crews are selected is not important. So we use the combinations formula to solve this question.
Combinations formula:
[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
In how many ways can the manager select a team?
2 cashiers from a set of 10.
4 kitchen crews from a set of 15. So
[tex]T = C_{10,2}*C_{15,4} = \frac{10!}{2!(10-2)!}*\frac{15!}{4!(15-4)!} = 45*1365 = 61425[/tex]
The manager can select a team in 61425 ways.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.