Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Volume of the tablet is height times pi r squared = .4cm x pi x .5^2 = pi cm^3
So, the tablet has a volume of pi cubic centimeters (cc).
We want the capsule to have the same volume. The two hemispherical ends put together make one sphere. The volume of a sphere is 4/3 pi r^3. And the cylindrical part is the same formula as the first one, but we don't know what r is,
height x pi x r^2.
pi cc = height x pie x r^2 + 4/3 pi r^3 Here, we took the value from the original problem and made it equal to the two ends of the capsule (together were the sphere) PLUS the rest (which is a cylinder.)
Now, divide everything by pi to factor it out of the equation.
cc = height x r^2 + 4/3 r^3 The problem told us that the total length is 5/3 cm, this means the cylinder height + the radius times two = 5/3. (Wish I could draw you a picture) So height in the equation at the beginning of this paragraph is 5/3 - 2r.
Now we have volume in cc = (5/3 - 2r)r^2 + 4/3 r^3 =
5/3r^2 - 2r^3 + 4/3r^3
simplified by combining common terms, and written in standard form,
volume in cc = 2 r^3 + 5/3 r^2 = 1 = r^2 ( r - 5/3) , factoring out the r^2.
this means that r^2 is the reciprocal of r - 5/3, or r^2 = 1/(r - 5/3), and this is a quadratic equation.
r^2 - r + .6 = 0 and r^2 -r + .25 = -.6 + .25 by completing the square
or (r - .25)^2 = -.35. Solve for r: square root of r - .25 = square root of .35 or .59
r = .84 cm
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.