Answered

Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Simplify this expression: x^2+6x+5/x^2-25

Sagot :

[tex]\frac{x^2+6x+5}{x^2-25}=(*);\ x^2-25\neq0\to x^2\neq25\to x\neq-5\ \wedge\ x\neq5\\\\x^2+6x+5=0\\\\\Delta=6^2-4\cdot1\cdot5=36-20=16;\ \sqrt\Delta=\sqrt{16}=4\\\\x_1=\frac{-6-4}{2\cdot1}=\frac{-10}{2}=-5;\ x_2=\frac{-6+4}{2\cdot1}=\frac{-2}{2}=-1\\\\x^2+6x+5=(x+5)(x+1)[/tex]


[tex](*)=\frac{(x+5)(x+1)}{(x-5)(x+5)}=\frac{x+1}{x-5}[/tex]
[tex] \frac{x^2+6x+5}{x^2-25}= \frac{x^2+6x+5}{(x-5)(x+5)}=(*) \ \ \\ \\.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x -5\neq 0\ \ and\ \ x+5 \neq 0\ \ \Rightarrow\ \ x\in R\setminus \{5;-5\}\\ \\x^2+6x+5=(x+5)(x+1)\\ \\because:\\\Delta=6^2-4\cdot1\cdot5=36-20=16\ \ \Rightarrow\ \ \sqrt{\Delta} = \sqrt{16} =4\\ \\ x_1= \frac{-6-4}{2\cdot1} = \frac{-10}{2} =-5,\ \ x_2= \frac{-6+4}{2\cdot1} = \frac{-2}{2} =-1\\ \\ \\ (*)= \frac{(x+5)(x+1)}{(x-5)(x+5)} = \frac{x+1}{x-5} [/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.