Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
so the square root of the quatity(x+7)=x-5
so you square both sides and get rid of the square root
x+7=(x-5)^2
(x-5)^2=x^2-10x+25
x+7=x^2-10x+25
subtract 7 from both sides
x=x^2-10x+18
subtract x from both sides
0=x^2-11x+18
so if xy=0 we can assume that x or/and y =0
factor out x^2-11+18
(find what two numbers multiply to get 18 and add to get -11)
-2 times -9=18
-2+(-9)=-11
(x-2)(x-9)=0
set them to zero
x-2=0
x=2
x-9=0
x=9
there are two answers -2 and -9
so you square both sides and get rid of the square root
x+7=(x-5)^2
(x-5)^2=x^2-10x+25
x+7=x^2-10x+25
subtract 7 from both sides
x=x^2-10x+18
subtract x from both sides
0=x^2-11x+18
so if xy=0 we can assume that x or/and y =0
factor out x^2-11+18
(find what two numbers multiply to get 18 and add to get -11)
-2 times -9=18
-2+(-9)=-11
(x-2)(x-9)=0
set them to zero
x-2=0
x=2
x-9=0
x=9
there are two answers -2 and -9
The domain:
The radicand must be greater than or equal to 0.
[tex]x+7 \geq 0 \\ x \geq -7[/tex]
The value of the square root must be greater than or equal to 0.
[tex]x-5 \geq 0 \\ x \geq 0[/tex]
Therefore x≥5.
[tex]\sqrt{x+7}=x-5 \\ (\sqrt{x+7})^2=(x-5)^2 \\ x+7=x^2-10x+25 \\ 0=x^2-11x+18 \\ 0=x^2-9x-2x+18 \\ 0=x(x-9)-2(x-9) \\ 0=(x-2)(x-9) \\ x-2=0 \ \lor \ x-9=0 \\ x=2 \ \lor \ x=9[/tex]
2<5 so it's not a correct solution.
9≥5 so it's a correct solution.
The answer:
x=9
The radicand must be greater than or equal to 0.
[tex]x+7 \geq 0 \\ x \geq -7[/tex]
The value of the square root must be greater than or equal to 0.
[tex]x-5 \geq 0 \\ x \geq 0[/tex]
Therefore x≥5.
[tex]\sqrt{x+7}=x-5 \\ (\sqrt{x+7})^2=(x-5)^2 \\ x+7=x^2-10x+25 \\ 0=x^2-11x+18 \\ 0=x^2-9x-2x+18 \\ 0=x(x-9)-2(x-9) \\ 0=(x-2)(x-9) \\ x-2=0 \ \lor \ x-9=0 \\ x=2 \ \lor \ x=9[/tex]
2<5 so it's not a correct solution.
9≥5 so it's a correct solution.
The answer:
x=9
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.