Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Solving Radical Equations

Square root x+7 = x - 5


Sagot :

so the square root of the quatity(x+7)=x-5

so you square both sides and get rid of the square root
x+7=(x-5)^2
(x-5)^2=x^2-10x+25
x+7=x^2-10x+25
subtract 7 from both sides
x=x^2-10x+18
subtract x from both sides
0=x^2-11x+18

so if xy=0 we can assume that x or/and y =0

factor out x^2-11+18
(find what two numbers multiply to get 18 and add to get -11)
-2 times -9=18
-2+(-9)=-11

(x-2)(x-9)=0
set them to zero
x-2=0
x=2

x-9=0
x=9

there are two answers -2 and -9
naǫ
The domain:
The radicand must be greater than or equal to 0.
[tex]x+7 \geq 0 \\ x \geq -7[/tex]
The value of the square root must be greater than or equal to 0.
[tex]x-5 \geq 0 \\ x \geq 0[/tex]
Therefore x≥5.

[tex]\sqrt{x+7}=x-5 \\ (\sqrt{x+7})^2=(x-5)^2 \\ x+7=x^2-10x+25 \\ 0=x^2-11x+18 \\ 0=x^2-9x-2x+18 \\ 0=x(x-9)-2(x-9) \\ 0=(x-2)(x-9) \\ x-2=0 \ \lor \ x-9=0 \\ x=2 \ \lor \ x=9[/tex]
2<5 so it's not a correct solution.
9≥5 so it's a correct solution.

The answer:
x=9