Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

pythagorean theorem converse please help i’ll mark brainlest

Pythagorean Theorem Converse Please Help Ill Mark Brainlest class=

Sagot :

Answer:

thanks

Step-by-step explanation:

We can prove this by contradiction.

Let us assume that c2=a2+b2 in ΔABC and the triangle is not a right triangle.

Now consider another triangle ΔPQR. We construct ΔPQR so that PR=a, QR=b and ∠R is a right angle.

By the Pythagorean Theorem, (PQ)2=a2+b2.

But we know that a2+b2=c2 and a2+b2=c2 and c=AB.

So, (PQ)2=a2+b2=(AB)2.

That is, (PQ)2=(AB)2.

Since PQ and AB are lengths of sides, we can take positive square roots.

PQ=AB

That is, all the three sides of ΔPQR are congruent to the three sides of ΔABC. So, the two triangles are congruent by the Side-Side-Side Congruence Property.

Since ΔABC is congruent to ΔPQR and ΔPQR is a right triangle, ΔABC must also be a right triangle.

This is a contradiction. Therefore, our assumption must be wrong.

Step-by-step explanation:

We can prove this by contradiction.

Let us assume that c2=a2+b2 in ΔABC and the triangle is not a right triangle.

Now consider another triangle ΔPQR. We construct ΔPQR so that PR=a, QR=b and ∠R is a right angle.

By the Pythagorean Theorem, (PQ)2=a2+b2.

But we know that a2+b2=c2 and a2+b2=c2 and c=AB.

So, (PQ)2=a2+b2=(AB)2.

That is, (PQ)2=(AB)2.

Since PQ and AB are lengths of sides, we can take positive square roots.

PQ=AB

That is, all the three sides of ΔPQR are congruent to the three sides of ΔABC. So, the two triangles are congruent by the Side-Side-Side Congruence Property.

Since ΔABC is congruent to ΔPQR and ΔPQR is a right triangle, ΔABC must also be a right triangle.

This is a contradiction. Therefore, our assumption must be wrong