Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
a. d/2 mid-way between the charges.
b. d/2 mid-way between the charges.
Explanation:
(a) Find the location of all points, if any, where the electric potential is zero.
Since the charges are of equal magnitude and opposite charge and separated by a distance, d, the electric potential due to the +Q charge is V = kQ/x and that due to the -Q charge is V' = -kQ/(d - x) where x is the point of zero electric potential.
The potential is zero when V + V' = 0, and this can only be midway between the charges. This is shown below
So, kQ/x + [-kQ/(d - x)] = 0
kQ/x - kQ/(d - x) = 0
kQ/x = kQ/(d - x)
1/x = 1/(d - x)
(d - x) = x
d = x + x
d = 2x
x = d/2 which is mid-way between the charges.
(b) Find the location of all points, if any, where the electric field is zero.
Since the charges are of equal magnitude and opposite charge and separated by a distance, d, the electric field due to the +Q charge is E = kQ/x² and that due to the -Q charge is E' = -kQ/(d - x)² where x is the point of zero electric field.
The electric field is zero when E + E' = 0 and this can only be midway between the charges. This is shown below.
So, kQ/x² + [-kQ/(d - x)²] = 0
kQ/x² - kQ/(d - x)² = 0
kQ/x² = kQ/(d - x)²
1/x² = 1/(d - x)²
(d - x)² = x²
d - x = ± x
d = x ± x
d = x - x or x + x
d = 0 or 2x
d = 0 or d = 2x
Since d ≠ 0, d = 2x ⇒ x = d/2 which is midway between the charges.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.