Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
a) the total electric potential is 2282000 V
b) the total electric potential (in V) at the point with coordinates (0, 1.50 cm) is 1330769.23 V
Explanation:
Given the data in the question and as illustrated in the image below;
a) Determine the total electric potential (in V) at the origin.
We know that; electric potential due to multiple charges is equal to sum of electric potentials due to individual charges
so
Electric potential at p in the diagram 1 below is;
Vp = V1 + V2
Vp = kq1/r1 + kq2/r2
we know that; Coulomb constant, k = 9 × 10⁹ C
q1 = 4.60 uC = 4.60 × 10⁻⁶ C
r1 = 1.25 cm = 0.0125 m
q2 = -2.06 uC = -2.06 × 10⁻⁶ C
location x2 = −1.80 cm; so r2 = 1.80 cm = 0.018 m
so we substitute
Vp = ( 9 × 10⁹ × 4.60 × 10⁻⁶/ 0.0125 ) + ( 9 × 10⁹ × -2.06 × 10⁻⁶ / 0.018 )
Vp = (3312000) + ( -1030000 )
Vp = 3312000 -1030000
Vp = 2282000 V
Therefore, the total electric potential is 2282000 V
b)
the total electric potential (in V) at the point with coordinates (0, 1.50 cm).
As illustrated in the second image;
r1² = 0.015² + 0.0125²
r1 = √[ 0.015² + 0.0125² ]
r1 = √0.00038125
r1 = 0.0195
Also
r2² = 0.015² + 0.018²
r2 = √[ 0.015² + 0.018² ]
r2 = √0.000549
r2 = 0.0234
Now, Electric Potential at P in the second image below will be;
Vp = V1 + V2
Vp = kq1/r1 + kq2/r2
we substitute
Vp = ( 9 × 10⁹ × 4.60 × 10⁻⁶/ 0.0195 ) + ( 9 × 10⁹ × -2.06 × 10⁻⁶ / 0.0234 )
Vp = 2123076.923 + ( -762962.962 )
Vp = 2123076.923 -792307.692
Vp = 1330769.23 V
Therefore, the total electric potential (in V) at the point with coordinates (0, 1.50 cm) is 1330769.23 V
a) The total electric potential is 2282000 V
b) The total electric potential (in V) at the point with coordinates (0, 1.50 cm) is 1330769.23 V
What is electric potential?
The electric potential is defined as the amount of work energy needed to move a unit of electric charge from a reference point to a specific point in an electric field.
Given the data in the question and as illustrated in the image below;
a) Determine the total electric potential (in V) at the origin.
We know that; electric potential due to multiple charges is equal to sum of electric potentials due to individual charges
Electric potential at p in diagram 1 below is;
[tex]V_P=V_1+V_2[/tex]
[tex]Vp = \dfrac{kq_1}{r_1} + \dfrac{kq_2}{r_2}[/tex]
we know that; the Coulomb constant, k = 9 × 10⁹ C
q1 = 4.60 uC = 4.60 × 10⁻⁶ C
r1 = 1.25 cm = 0.0125 m
q2 = -2.06 uC = -2.06 × 10⁻⁶ C
location x2 = −1.80 cm; so r2 = 1.80 cm = 0.018 m
so we substitute
Vp = ( 9 × 10⁹ × 4.60 × 10⁻⁶/ 0.0125 ) + ( 9 × 10⁹ × -2.06 × 10⁻⁶ / 0.018 )
Vp = (3312000) + ( -1030000 )
Vp = 3312000 -1030000
Vp = 2282000 V
Therefore, the total electric potential is 2282000 V
b)The total electric potential (in V) at the point with coordinates (0, 1.50 cm).
As illustrated in the second image;
[tex]r_1^2=0.015^2+0.0125^2[/tex]
[tex]r_1 = \sqrt{[ 0.015^2 + 0.0125^2 ][/tex]
[tex]r_1 = \sqrt{0.00038125}[/tex]
[tex]r_1 = 0.0195[/tex]
Also
[tex]r_2^2 = 0.015^2 + 0.018^2[/tex]
[tex]r_2 = \sqrt{0.015^2 + 0.018^2}[/tex]
[tex]r_2 = \sqrt{0.000549[/tex]
[tex]r_2 = 0.0234[/tex]
Now, Electric Potential at P in the second image below will be;
Vp = V1 + V2
[tex]Vp = \dfrac{kq_1}{r_1} + \dfrac{kq_2}{r_2}[/tex]
we substitute
Vp = ( 9 × 10⁹ × 4.60 × 10⁻⁶/ 0.0195 ) + ( 9 × 10⁹ × -2.06 × 10⁻⁶ / 0.0234 )
Vp = 2123076.923 + ( -762962.962 )
Vp = 2123076.923 -792307.692
Vp = 1330769.23 V
Therefore, the total electric potential (in V) at the point with coordinates (0, 1.50 cm) is 1330769.23 V
To know more about electric potential follow
https://brainly.com/question/25923373
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.