Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Answer:
The mean of the sampling distribution of the proportion of employees who wear contact lenses is 0.12 and the standard deviation is 0.0145.
Step-by-step explanation:
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
12% of the employees wear contact lenses.
This means that [tex]p = 0.12[/tex]
Samples of 500:
This means that [tex]n = 500[/tex]
What are the mean and standard deviation of the sampling distribution of the proportion of employees who wear contact lenses?
Mean:
[tex]\mu = p = 0.12[/tex]
Standard deviation:
[tex]s = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.12*0.88}{500}} = 0.0145[/tex]
The mean of the sampling distribution of the proportion of employees who wear contact lenses is 0.12 and the standard deviation is 0.0145.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.