At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Find the angle of XYZ. Give your answer to one decimal place

Find The Angle Of XYZ Give Your Answer To One Decimal Place class=

Sagot :

Answer:

72.9 degrees

Step-by-step explanation:

First we need to calculate the hypothenuse with the teorem of Pythagoras. ZY = sqrt(13^2+4^2) = 13.6 cm. sqrt stands for square root.

The we calculate the cosine of our angle (we could use the sine but I'll use the cosine here, the method is a little different with the sine). For the cosine divide the adjacent side by the hypothenuse: 4/13.6 =0.294

then we use the cos^-1 function on the calculator , so cos^-1(0.294) =72.897 =72.9 degrees.

I hope this helped

Answer:

∠ XYZ ≈ 72.9°

Step-by-step explanation:

Using the tangent ratio in the right triangle

tanY = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{XZ}{XY}[/tex] = [tex]\frac{13}{4}[/tex] , then

∠ XYZ = [tex]tan^{-1}[/tex] ([tex]\frac{13}{4}[/tex] ) ≈ 72.9° ( to 1 dec. place )

Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.