Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
B) 4√2
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Parametric Differentiation
Integration
- Integrals
- Definite Integrals
- Integration Constant C
Arc Length Formula [Parametric]: [tex]\displaystyle AL = \int\limits^b_a {\sqrt{[x'(t)]^2 + [y(t)]^2}} \, dx[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \left \{ {{x = t - cos(t)} \atop {y = 1 - sin(t)}} \right.[/tex]
Interval [0, π]
Step 2: Find Arc Length
- [Parametrics] Differentiate [Basic Power Rule, Trig Differentiation]: [tex]\displaystyle \left \{ {{x' = 1 + sin(t)} \atop {y' = -cos(t)}} \right.[/tex]
- Substitute in variables [Arc Length Formula - Parametric]: [tex]\displaystyle AL = \int\limits^{\pi}_0 {\sqrt{[1 + sin(t)]^2 + [-cos(t)]^2}} \, dx[/tex]
- [Integrand] Simplify: [tex]\displaystyle AL = \int\limits^{\pi}_0 {\sqrt{2[sin(x) + 1]} \, dx[/tex]
- [Integral] Evaluate: [tex]\displaystyle AL = \int\limits^{\pi}_0 {\sqrt{2[sin(x) + 1]} \, dx = 4\sqrt{2}[/tex]
Topic: AP Calculus BC (Calculus I + II)
Unit: Parametric Integration
Book: College Calculus 10e
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.