Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

a gas has a volume of 590 mL at a temperature of 590 mL at a temperature of -55.0 degrees Celsius. What volume will the gas occupy at 30.0 degrees Celsius?

Sagot :

Answer: The volume that gas occupy will be 820.04mL.

Explanation:

To calculate the volume of the gas at different temperature, we will use the equation given by Charles' Law.

This law states that volume is directly proportional to the temperature of the gas at constant pressure and number of moles.

[tex]V\propto T[/tex]

or,

[tex]\frac{V_1}{T_1}=\frac{V_2}{T_2}[/tex]

where,

[tex]V_1\text{ and }T_1[/tex] are the initial volume and initial temperature of the gas.

[tex]V_2\text{ and }T_2[/tex] are the final volume and final temperature of the gas.

We are given:

[tex]T(K)=273+T(^oC)[/tex]

[tex]V_1=590mL\\T_1=-55^oC=218K\\V_2=?mL\\T_2=30^oC=303K[/tex]

Putting values in above equation:

[tex]\frac{590}{218}=\frac{V_2}{303}\\\\V_2=820.04mL[/tex]

Hence, the volume that gas occupy will be 820.04mL.