Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
1. 1111.5MPa
2. 56.1GPa
Explanation:
1. Longitudinal tensile stress can be obtained by obtaining the strength and volume of the fiber reinforcement. The derived formula is given by;
σcl = σm (1 - Vf) + σfVf
Substituting the figures, we will have;
45(1 - 0.30) + 3600(0.30)
45(0.70) + 1080
31.5 + 1080
= 1111.5MPa
2. Longitudinal modulus of elasticity or Young's modulus is the ability of an object to resist deformation. The derived formula is given by;
Ecl = EmVm + EfVf
Substituting the formula gives;
= 2.4 (1 - 0.30) + 131 (0.30)
= 2.4(0.70) + 39.3
= 16.8 + 39.3
= 56.1GPa
Using the appropriate relation, the longitudinal tensile stress and the longitudinal modulus are 1111.50 and 56.10 respectively.
Longitudinal tensile stress can be obtained using the relation :
- σcl = σm (1 - Vf) + σfVf
Substituting the values into the relation:
45(1 - 0.30) + 3600(0.30)
45 × 0.70 + 1080
31.5 + 1080
= 1111.50 MPa
2.)
Longitudinal modulus of elasticity is obtained using the relation :
- Ecl = EmVm + EfVf
Substituting the values thus :
2.4 (1 - 0.30) + 131 (0.30)
= 2.4 × 0.70 + 39.3
= 16.8 + 39.3
= 56.10 GPa
Hence, the longitudinal tensile stress and the longitudinal modulus are 1111.50 and 56.10 respectively.
Learn more : https://brainly.com/question/22664384
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.