Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
The amount of the first solution rick needs to mix together to create the love portion is 8.5 mL
Explanation:
So as to make the love potion, we have;
The percentage of carbonated water in the love portion = 40%
The percentage of green tea in the first solution = 65%
The percentage of carbonated water in the first solution = 15%
The percentage of whole milk in the first solution = 20%
The percentage of orange juice in the second solution = 17%
The percentage of lemonade in the second solution = 38%
The percentage of carbonated water in the second solution = 45%
Let 'x' represent the volume in mL of the first solution added to make the love portion, and let 'y' be the volume in mL of the second solution added to make the love portion, we have;
x + y = 51...(1)
0.15·x + 0.45·y = 0.40×51 = 20.4
0.15·x + 0.45·y = 20.4...(2)
Solving the system of simultaneous equation by making 'y' the subject of each of the equation gives;
For equation (1)
y = 51 - x
For equation (2)
y = 20.4/0.45 - (0.15/0.45)·x = 136 - 3·x
y = 136/3 - (1/3)·x
Equating the two equations of 'y', gives;
51 - x = 136/3 - (1/3)·x
51 - 136/3 = x - (1/3)·x
17/3 = (2/3)·x
(2/3)·x = 17/3
x = (3/2) × (17/3) = 17/2 = 8.5
x = 8.5
y = 51 - x = 42.5
y = 42.5
Therefore, the amount of the first solution rick needs to mix together to create the love portion, x = 8.5 mL
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.