Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Answer:
The gas will occupy a volume of 1.702 liters.
Explanation:
Let suppose that the gas behaves ideally. The equation of state for ideal gas is:
[tex]P\cdot V = n\cdot R_{u}\cdot T[/tex] (1)
Where:
[tex]P[/tex] - Pressure, measured in kilopascals.
[tex]V[/tex] - Volume, measured in liters.
[tex]n[/tex] - Molar quantity, measured in moles.
[tex]T[/tex] - Temperature, measured in Kelvin.
[tex]R_{u}[/tex] - Ideal gas constant, measured in kilopascal-liters per mole-Kelvin.
We can simplify the equation by constructing the following relationship:
[tex]\frac{P_{1}\cdot V_{1}}{T_{1}} = \frac{P_{2}\cdot V_{2}}{T_{2}}[/tex] (2)
Where:
[tex]P_{1}[/tex], [tex]P_{2}[/tex] - Initial and final pressure, measured in kilopascals.
[tex]V_{1}[/tex], [tex]V_{2}[/tex] - Initial and final volume, measured in liters.
[tex]T_{1}[/tex], [tex]T_{2}[/tex] - Initial and final temperature, measured in Kelvin.
If we know that [tex]P_{1} = 121\,kPa[/tex], [tex]P_{2} = 202\,kPa[/tex], [tex]V_{1} = 2.7\,L[/tex], [tex]T_{1} = 288\,K[/tex] and [tex]T_{2} = 303\,K[/tex], the final volume of the gas is:
[tex]V_{2} = \left(\frac{T_{2}}{T_{1}} \right)\cdot \left(\frac{P_{1}}{P_{2}} \right)\cdot V_{1}[/tex]
[tex]V_{2} = 1.702\,L[/tex]
The gas will occupy a volume of 1.702 liters.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.