Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Answer:
An irrational number is a number that can not be written as the quotient of two integer numbers.
Then if we have:
A = a rational number
B = a irrational number.
Then we can write:
A = x/y
Then the product of A and B can be written as:
A*B = (x/y)*B
Now, let's assume that this product is a rational number, then the product can be written as the quotient between two integer numbers.
(x/y)*B = (m/n)
If we isolate B, we get:
B = (m/n)*(y/x)
We can rewrite this as:
B = (m*y)/(n*x)
Where m, n, y, and x are integer numbers, then:
m*y is an integer
n*x is an integer.
Then B can be written as the quotient of two integer numbers, but this contradicts the initial hypothesis where we assumed that B was an irrational number.
Then the product of an irrational number and a rational number different than zero is always an irrational number.
We need to add the fact that the rational number is different than zero because if:
B is an irrational number
And we multiply it by zero, we get:
B*0 = 0
Then the product of an irrational number and zero is zero, which is a rational number.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.