Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
i: the domain.
iii: the axis of symmetry.
Step-by-step explanation:
We have the function:
f(x) = x^2
The domain of this function is the set of all real numbers, and the range is:
R: [0, ∞)
(because 0 is the minimum of x^2)
Now we have the transformation:
d(x) = f(x) + 9 = x^2 + 9
Notice that this is only a vertical translation of 9 units, then there is no horizontal movement, then the axis of symmetry does not change.
Also, in d(x) there is no value of x that makes a problem, so the domain is the set of all real numbers, then the domain does not change.
And d(x) = x^2 + 9 has the minimum at x = 0, then the minimum is:
d(0) = 0^2 + 9 = 9
Then the range is:
R: [9, ∞)
Then the range changes.
So we can conclude that the attributes that will be the same for f(x) and d(x) are:
i: the domain.
iii: the axis of symmetry.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.