Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer:
The 99% confidence interval for the difference between the mean fill volumes at the two locations is;
-0.1175665 L < μ₁ - μ₂ < 0.1295665 L
Step-by-step explanation:
The number of bottles in the sample at the first location, n₁ = 18 bottles
The mean fill volume, [tex]\bar{x}_{1}[/tex] = 2.007 L
The standard deviation, σ₁ = 0.010 L
The number of bottles in the sample at the second location, n₂ = 10 bottles
The mean fill volume, [tex]\bar{x}_{2}[/tex] = 2.001 L
The standard deviation, σ₂ = 0.012 L
The nature of the variance of the two samples = Equal variance
The confidence interval of the statistics, C = 99%
The difference between the mean
[tex]\mu_1 - \mu_2 = \left (\bar{x}_{1}- \bar{x}_{2} \right )\pm t_{\alpha /2} \times \sqrt{\dfrac{\sigma _{1}^{2}}{n_{1}}+\dfrac{\sigma _{2}^{2}}{n_{2}}}[/tex]
(1 - C)/2 = (1 - 0.99)/2 = 0.005, the degrees of freedom, f = n₁ - 1 = 10 - 1 = 9
∴ [tex]t_{\alpha /2}[/tex] = 3.25
Therefore, we have;
[tex]\mu_1 - \mu_2 = \left (2.007- 2.001 \right )\pm 3.25 \times \sqrt{\dfrac{0.01^{2}}{18}+\dfrac{0.12^{2}}{10}}[/tex]
Therefore, we have the difference of the two means given as follows;
-0.1175665 L < μ₁ - μ₂ < 0.1295665 L
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.