Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Find the maximum rate of change off at the given point and the direction in which it occurs.

f(x, y) = 4y √x, (4, 1)


Sagot :

Answer:

Maximum rate change |[tex]\nabla[/tex]f| = √65

Direction = ( 1, 8 ) / √65

i.e Maximum rate change is √65 and it occurs in a direction of ( 1, 8 )

Step-by-step explanation:

Given that;

f(x, y) = 4y √x, (4, 1)

{ x=4 and y=1 }

Maximum rate of change occurs with the gradient vector;

[tex]\nabla[/tex]f = [ df/dx, df/dy ] = [ 2y/√x, 4√x ]

we substitute in our value of x and y

[tex]\nabla[/tex]f =  2(1)/√4, 4√4

[tex]\nabla[/tex]f = 2/√4, 4√4

[tex]\nabla[/tex]f = ( 1, 8 )

Maximum rate change |[tex]\nabla[/tex]f| = | ( 1, 8 ) | = √( 1² + 8² ) = √(1 + 64)

Maximum rate change |[tex]\nabla[/tex]f| = √65

Direction = [tex]\nabla[/tex]f / |[tex]\nabla[/tex]f|

we substitute

Direction = ( 1, 8 ) / √65

i.e Maximum rate change is √65 and it occurs in a direction of ( 1, 8 )