Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Suppose that postal requirements specify that parcels must have length plus girth at most 78 inches. Consider the problem of finding the dimensions of the square ended rectangular package of greatest volume that is mailable. A rectangular prism has length labeled X, width labeled h, and height labeled x.

Required:
a. Express the length plus the girth in terms of x and h.
b. Determine the objective and constraint equations.
c. What is the constraint equation?


Sagot :

Answer:

A. 4x + h

B. 4x + h = 78

V = x²h

Step-by-step explanation:

1. The length plus girth

X +x+x+x +h

= 4x +h

2. Constraint equation

4x + h = 78 ----(1)

Objective function

Volume = v = x*x*h

V = x²h ----(2)

3. Quantity as function of x

From equation 1 in answer part b

4x+h = 78

We make h subject

h = 78-4x

We put values of h in equation 2 in part b

V = x²h

V = x²(78-4x)

V = 78x²-4x³

To get values of x and h

V = 78x²-4x³

Dv/dx = 0

= 156x - 12x²

156x = 12x²

Divide through by 12x

156x/12x = 12x²/12x

x = 13

h = 78-4x

h = 78 - 4(13)

h = 78 - 52

h = 26 inches

View image ogorwyne
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.