Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
P(X > 25) = 0.69
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
The sale prices for a particular car are normally distributed with a mean and standard deviation of 26 thousand dollars and 2 thousand dollars, respectively.
This means that [tex]\mu = 26, \sigma = 2[/tex]
Find P(X>25)
This is 1 subtracted by the pvalue of Z when X = 25. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{25 - 26}{2}[/tex]
[tex]Z = -0.5[/tex]
[tex]Z = -0.5[/tex] has a pvalue of 0.31
1 - 0.31 = 0.69.
So
P(X > 25) = 0.69
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.