At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Answer:
The relationship in the table represents neither direct variation or inverse variation
Step-by-step explanation:
The table data are;
x = 5, 10, 15, 20
y = 2, 1, 1/3, 1/2
For a direct variation, we have;
y = k × x
Where;
k = A constant
Therefore;
k = y/x = constant for a direct variation
From the data, we have the following y/x values at each data point;
5/2 = 2.5
10/1 = 10
15/(1/3) = 45
20/(1/2) = 40
Therefore, y/x is not constant for the given data, therefore, the relationship in the table is not a direct variation
For an inverse variation, we have;
y·x = k (A constant)
The product of the 'x' and 'y' variables are given as follows;
5 × 2 = 10
10 × 1 = 10
15 × 1/3 = 5
20 × 1/2 = 10
The value of x × y is not always constant, therefore, therefore the relation in the table does not represent an inverse relation
Therefore, the relationship in the table represents neither direct variation or inverse variation
The relation represents an inverse variation because as the values of x is increasing the values of y is decreasing.
y = k/x
5 = k/2
k = 5 x 2 = 10
So here K will be 10.
The given values are in inverse variation and can be represented by equation y = 10/x
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.