Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer (assuming it can be in slope-intercept form):
y = x - 5
Step-by-step explanation:
1) First, find the slope of the equation. Use the slope formula, [tex]m = \frac{y_2-y_1}{x_2-x_1}[/tex], and substitute the x and y values of the given points into it. Then, solve:
[tex]m = \frac{(2)-(1)}{(7)-(6)} \\m = \frac{2-1}{7-6} \\m = \frac{1}{1} \\m = 1[/tex]
2) Now that we know the slope and at least one point the line crosses through, we can write an equation of the line in point-slope form, or [tex]y-y_1 = m (x-x_1)[/tex]. Substitute [tex]m[/tex], [tex]x_1[/tex], and [tex]y_1[/tex] for real values.
Since [tex]m[/tex] represents the slope, substitute 1 for it. Since [tex]x_1[/tex] and [tex]y_1[/tex] represent the x and y values of a point the line intersects, use any one of the given points (either one is fine, either way the equation will represent the same line) and substitute its x and y values into the equation. (I chose the point (6, 1), as seen below.) Finally, isolate y to put the equation in slope-intercept form.
[tex]y-1 = 1(x-6)\\y -1 = x-6\\y = x -5[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.