Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

I need help with these questions (see image). Please show workings.​

I Need Help With These Questions See Image Please Show Workings class=

Sagot :

Answer:

  • Q1. 37.3 cm
  • Q2. (a) 8.66 cm  (b) 17.3 cm

Step-by-step explanation:

Question 1

Given

  • Chord 1    c1 =  36 cm
  • Chord 2   c2 = 30 cm
  • Radius      r = d/2 = 50/2 = 25 cm
  • Chords are parallel

To find

  • The distance between the chords

Solution

The distance between the chords is sum of the distances between the center and the midpoint of the chords

The segments between the center to the midpoints of the chords for right triangles with one side being the radius.

The distance is:

  • h = h1 + h2
  • h1 = [tex]\sqrt{r^2 - (c1/2)^2} = \sqrt{25^2 - 18^2} = \sqrt{301}[/tex] ≈ 17.3 cm (rounded)
  • h2 =  [tex]\sqrt{r^2 - (c2/2)^2} = \sqrt{25^2 - 15^2} = \sqrt{400}[/tex] = 20 cm
  • h = 17.3 + 20 = 37.3 cm

------------------------------------------

Question 2

Given

  • Equilateral triangle inscribed into circle
  • Side of the triangle is 30 cm

To find

  • Distance between the center and the side
  • Radius

Solution

Midpoint of the side, the center and the vertex form a right triangle with 30° angle at the vertex.

Let the radius be r, the distance from the center to the side be h

Then we have:

  • r² = h² + (30/2)²

As per property of 30°-60°=90° triangle, the side opposite to 30° is half of the hypotenuse. In this case, h = r/2 or r = 2h

Substitute r into equation above and solve for h:

  • (2h)² =  h² + 225
  • 3h² = 225
  • h² = 75
  • h = √75 = 8.66 cm (rounded)

Find the value of r:

  • r = 2*8.66 = 17.3 cm (rounded)
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.