Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

For the given right triangle, find the value x to the nearest tenth:​

For The Given Right Triangle Find The Value X To The Nearest Tenth class=

Sagot :

Hello!

For this type of problem, we are given a right triangle, and my go-to for finding a side length with another given side length and an angle value would most likely be the law of sines.

The law of sines states that:

[tex]\frac{a}{sin(A)}=\frac{b}{sin(B)}[/tex]

In the given triangle, the [tex]a[/tex] would be 45, and the opposite angle [tex]71[/tex], would be the [tex]A[/tex].

The same can be applied to the other side of the proportion.

[tex]x=b[/tex]

The opposite angle of side [tex]x[/tex] can be found using the definition of the combined angle of a triangle.

[tex]90+71+B=180[/tex]

[tex]B=19[/tex]

So now we can set up our proportion.

[tex]\frac{45}{sin(71)}=\frac{x}{sin(19)}[/tex]

[tex]x=sin(19)*\frac{45}{sin(71)}[/tex]

And we get that [tex]x[/tex] is around 15.5.

Hope this helps!