Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

A soft-drink machine is regulated so that the amount of drink dispensed is approximately normally distributed with known standard deviation, sigma. Given a random sample of n drinks and the sample mean, x-bar, you find a 90% confidence interval for the mean of all drinks dispensed by this machine. Then you calculate a 90% confidence interval (same confidence level) using a larger sample, for example (n 20) drinks. Also, you notice that the sample mean, x-bar, is the same for both samples.

Required:
Was this a reasonable decision?


Sagot :

Answer:

This is  a reasonable decision because the sample size has no effect on the 90% confidence interval

Step-by-step explanation:

90% confidence interval

larger sample size = 20

condition : sample mean ( x-bar ) is the same for both samples

This is  a reasonable decision because the sample size has no effect on the 90% confidence interval

from condition 1 :

Amount of drink dispensed is normally distributed with known standard deviation , given a random sample of n drinks and the sample mean at a confidence interval of 90%

for condition 2 :

sample size = 20

mean = 2.25 ( assumed value )

std = 0.15 ( assumed value )

Z = 1.645 ( Z-value )

determine the 90% confidence interval

= mean ± z [tex]\frac{std}{\sqrt{n} }[/tex]

= 2.25 ± 1.645 [tex]\frac{0.15}{\sqrt{20} }[/tex]

= 2.25 ± 0.0335 = ( 2.2835 , 2.2165 )

Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.