Answered

Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Suppose that you'd like to find out if a distant star is moving relative to the earth. The star is much too far away to detect any change in its brightness as it moves toward or away from the earth. Instead we can use the Doppler effect to determine its relative speed. For this problem we are going to look at the spectral lines from hydrogen, specifically the one with a wavelength of 656.46 nm.
The hydrogen atoms in a star are also moving at high velocity because of the random motions caused by their high temperature. As a result, each atom is Doppler shifted a little bit differently, leading to a finite width of each spectral line, such as the 656.46-nm line we were just discussing. For a star like our sun, this leads to a finite width of the spectral lines of roughly Δλ=0.04nm.
If our instruments can only resolve to this accuracy, what is the lowest speed V, greater than 0, that we can measure a star to be moving?


Sagot :

Answer:

The answer is "[tex]\bold{18 \ \frac{km}{s}}[/tex]"

Explanation:

Its concern is not whether star speed is significantly lower than the light speed. Taking into consideration the relativistic tempo (small speed star)

[tex]\to \frac{\Delta \lambda}{\lambda} = \frac{v}{c}\\\\\to v = \frac{\Delta \lambda}{\lambda} \left (c \right ) \\\\[/tex]

       [tex]= \left ( \frac{0.04}{656.46} \right ) (3 \times 10^8)\\\\ = 18280 \ \frac{m}{s} \approx 18 \ \frac{km}{s}[/tex]

We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.