Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Particle A and particle B are held together with a compressed spring between them. When they are released, the spring pushes them apart, and they then fly off in opposite directions, free of the spring. The mass of A is 8.00 times the mass of B, and the energy stored in the spring was 73 J. Assume that the spring has negligible mass and that all its stored energy is transferred to the particles. (a) Once that transfer is complete, what is the kinetic energy of particle A

Sagot :

Answer:

 K_a = 8,111 J

Explanation:

This is a collision exercise, let's define the system as formed by the two particles A and B, in this way the forces during the collision are internal and the moment is conserved

initial instant. Just before dropping the particles

          p₀ = 0

final moment

          p_f = m_a v_a + m_b v_b

          p₀ = p_f

          0 = m_a v_a + m_b v_b

tells us that

          m_a = 8 m_b

         

           0 = 8 m_b v_a + m_b v_b

           v_b = - 8 v_a                    (1)

indicate that the transfer is complete, therefore the kinematic energy is conserved

starting point

           Em₀ = K₀ = 73 J

final point. After separating the body

          Em_f = K_f = ½ m_a v_a² + ½ m_b v_b²

           K₀ = K_f

           73 = ½ m_a (v_a² + v_b² / 8)

           

we substitute equation 1

           73 = ½ m_a (v_a² + 8² v_a² / 8)

           73 = ½ m_a (9 v_a²)

           73/9 = ½ m_a (v_a²) = K_a

            K_a = 8,111 J