Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer: Choice C. 107.9 degrees (approximate)
=======================================================
Explanation:
Draw a line segment from A to B. Mark point E as the intersection between this new line segment and the arc CD.
We can see that AE = 4000 because it's another radius of the same circle. The diagram shows that EB = 2800.
So,
AB = AE+EB = 4000+2800 = 6800
Because point D is a tangent point, this means radius AD is perpendicular to tangent segment BD. We have a 90 degree angle at point D, or we can write angle BDA = 90.
With triangle BDA being a right triangle, we can use a trig ratio to compute angle DAB. I'll call this angle A for short.
---------
Apply the cosine ratio. Focus entirely on triangle BDA.
cos(angle) = adjacent/hypotenuse
cos(A) = AD/AB
cos(A) = 4000/6800
cos(A) = 10/17
A = arccos(10/17)
A = 53.9681209275294 ... make sure your calc is in degree mode
A = 53.968
Angle DAB = 53.968 degrees approximately
This represents exactly half of central angle CAD, so we'll double the value to get 2*53.968 = 107.936 which rounds to 107.9 degrees showing why choice C is the answer.
Central angle CAD is exactly equal to the arc it cuts off, minor arc CD. The central angle is roughly 107.9 degrees of a full 360 degree circle, and the same can be said about the outer arc edge piece of minor arc CD.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.