Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Divide a 5-inch line into two parts so that one part (a) 2 1/4 inches shorter than the other; (b) 3 times the other.

Sagot :

part a), solve this system of equations:
x + y = 5
x - y = 2.25
2x = 7.25
x = 3.625
y = 1.375

part b), solve this system of equations:
x + y = 5
x = 3y
y = 1.25
x = 3.75

Answer:

We have to divide 5-inch line into two parts so that one part (a) 2 1/4 inches or 2.25 inches shorter than the other; (b) 3 times the other

We can write this statement as :

(a) [tex]x+(x-2.25)=5[/tex]

Solving this we get

[tex]2x=5+2.25[/tex]

[tex]2x=7.25[/tex]

x = 3.625 inches

And the other part will be = [tex]5-3.625=1.375[/tex] inches

(b) As we have x+y=5

We have to find two parts where one is 3 times the other. This means we have to find x=3y

So, we have [tex]3y+y=5[/tex]

[tex]4y=5[/tex]

y = 1.25 inches

Other part x is [tex]5-1.25=3.75[/tex] inches

Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.