Answered

Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Assume that the growth rate of a population of ants is proportional to the size of the population at each instant of time. Suppose 100 ants are present initially and 230 are present after 3 days.

a. Write a differential equation that models the population of the ants.

b. Solve the differential equation with the initial conditions.

c. What is the population of the ants after 14 days?


Sagot :

(1/A)  dA/dt=  C where A is the population of ants and C is a constant
ln(A) = C*t + C1 where C1 is another constant that comes out of integration and t is time in days.
Plugging in: at t=0, A= 100 so C1 = ln(100) = 4.605
at t=3, A=230 so ln(230) = 3*C +4.605 so C = 0.278
Final equation:
ln(A) = 0.278t + 4.605
or:
A = exp(0.278t + 4.605)
After 14 days, A = exp(0.278*14 + 4.605) = 4875.2