Answered

Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Assume that the growth rate of a population of ants is proportional to the size of the population at each instant of time. Suppose 100 ants are present initially and 230 are present after 3 days.

a. Write a differential equation that models the population of the ants.

b. Solve the differential equation with the initial conditions.

c. What is the population of the ants after 14 days?


Sagot :

(1/A)  dA/dt=  C where A is the population of ants and C is a constant
ln(A) = C*t + C1 where C1 is another constant that comes out of integration and t is time in days.
Plugging in: at t=0, A= 100 so C1 = ln(100) = 4.605
at t=3, A=230 so ln(230) = 3*C +4.605 so C = 0.278
Final equation:
ln(A) = 0.278t + 4.605
or:
A = exp(0.278t + 4.605)
After 14 days, A = exp(0.278*14 + 4.605) = 4875.2
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.