Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Answer:
a) The 98% confidence interval for the mean weight is between 10.00409 grams and 10.00471 grams
b) 49 measurements are needed.
Step-by-step explanation:
Question a:
We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1 - 0.98}{2} = 0.01[/tex]
Now, we have to find z in the Ztable as such z has a pvalue of [tex]1 - \alpha[/tex].
That is z with a pvalue of [tex]1 - 0.01 = 0.99[/tex], so Z = 2.327.
Now, find the margin of error M as such
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.
[tex]M = 2.327\frac{0.0003}{\sqrt{5}} = 0.00031[/tex]
The lower end of the interval is the sample mean subtracted by M. So it is 10.0044 - 0.00031 = 10.00409 grams
The upper end of the interval is the sample mean added to M. So it is 10 + 0.00031 = 10.00471 grams
The 98% confidence interval for the mean weight is between 10.00409 grams and 10.00471 grams.
(b) How many measurements must be averaged to get a margin of error of +/- 0.0001 with 98% confidence?
We have to find n for which M = 0.0001. So
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
[tex]0.0001 = 2.327\frac{0.0003}{\sqrt{n}}[/tex]
[tex]0.0001\sqrt{n} = 2.327*0.0003[/tex]
[tex]\sqrt{n} = \frac{2.327*0.0003}{0.0001}[/tex]
[tex](\sqrt{n})^2 = (\frac{2.327*0.0003}{0.0001})^2[/tex]
[tex]n = 48.73[/tex]
Rounding up
49 measurements are needed.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.