Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
a) 67.6% of students is expected to pass the course
b) 0.9112 = 91.12% probability that he/she attended classes on Fridays
Step-by-step explanation:
Conditional Probability
We use the conditional probability formula to solve this question. It is
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]
In which
P(B|A) is the probability of event B happening, given that A happened.
[tex]P(A \cap B)[/tex] is the probability of both A and B happening.
P(A) is the probability of A happening.
a. What percentage of students is expected to pass the course?
88% of 70%(attended class)
20% of 100 - 70 = 30%(did not attend class). So
[tex]p = 0.88*0.7 + 0.2*0.3 = 0.676[/tex]
0.676*100% = 67.6%
67.6% of students is expected to pass the course.
b. Given that a person passes the course, what is the probability that he/she attended classes on Fridays?
Here, we use conditional probability:
Event A: Passed the course
Event B: Attended classes on Fridays.
67.6% of students is expected to pass the course.
This means that [tex]P(A) = 0.676[/tex]
Probability that passed and attended classes on Friday.
88% of 70%
This means that:
[tex]P(A \cap B) = 0.88*0.7 = 0.616[/tex]
Then
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.616}{0.676} = 0.9112[/tex]
0.9112 = 91.12% probability that he/she attended classes on Fridays
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.