Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

A cup of coffee at 95 degrees Celsius is placed in a room at 25 degrees Celsius. Suppose that the coffee cools at a rate of 2 degrees Celsius per minute when the temperature of the coffee is 70 degrees. The differential equation describing this has the form

Sagot :

Answer:

See Explanation

Step-by-step explanation:

For an object at temperature T and supposing that the ambient temperature is Ta then we can write the differential equation that typifies the Newton law of cooling as follows;

dT/dt=-k(T-Tₐ)

So

dT/dt = 2 degrees Celsius per minute

T = 70 degrees Celsius

Ta = 25 degrees Celsius

2 = -k(70 - 25)

-k = 2/(70 - 25)

k = - 0.044

Hence we can write;

dT/dt=-(- 0.044)(95-25)

dT/dt= 3 degrees Celsius per minute

We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.