Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Answer:
0.0156 probability that they got three cats.
0.4219 probability that they got three dogs.
Step-by-step explanation:
For each person there are only two possible outcomes. Either they adopted a dog, or a cat. The probability of a person adopting a cat or a dog is independent of any other person, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
Three people:
This means that [tex]n = 3[/tex]
What's the probability that they got three cats?
25% of the time it's a cat adopted, which means that [tex]p = 0.25[/tex]
This is P(X = 3). So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 3) = C_{3,3}.(0.25)^{3}.(0.75)^{0} = 0.0156[/tex]
0.0156 probability that they got three cats.
What's the probability that they got three dogs?
75% of the time it's a dog adopted, which means that [tex]p = 0.75[/tex]
This is P(X = 3). So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 3) = C_{3,3}.(0.75)^{3}.(0.25)^{0} = 0.4219[/tex]
0.4219 probability that they got three dogs.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.