Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
9514 1404 393
Answer:
- maximum: 15∛5 ≈ 25.6496392002
- minimum: 0
Step-by-step explanation:
The minimum will be found at the ends of the interval, where f(t) = 0.
The maximum is found in the middle of the interval, where f'(t) = 0.
[tex]f(t)=\sqrt[3]{t}(20-t)\\\\f'(t)=\dfrac{20-t}{3\sqrt[3]{t^2}}-\sqrt[3]{t}=\sqrt[3]{t}\left(\dfrac{4(5-t)}{3t}\right)[/tex]
This derivative is zero when the numerator is zero, at t=5. The function is a maximum at that point. The value there is ...
f(5) = (∛5)(20-5) = 15∛5
The absolute maximum on the interval is 15∛5 at t=5.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.