Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer:
pH = 7 ⇒ [H⁺] = 1.0x10⁻⁷ M
pH = 5.6 ⇒ [H⁺] = 2.5x10⁻⁶ M
pH = 3.7 ⇒ [H⁺] = 2.0x10⁻⁴ M
H⁺ concentration in the Hubbard Brook sample is 80 times higher than in unpolluted rainwater.
Explanation:
To answer this problem we need to keep in mind the definition of pH:
- pH = -log[H⁺]
Meaning that after isolating [H⁺] we're left with:
- [H⁺] = [tex]10^{-pH}[/tex]
Now we proceed to calculate [H⁺] for the given pHs:
- pH = 7 ⇒ [H⁺] = [tex]10^{-7}[/tex] = 1.0x10⁻⁷ M
- pH = 5.6 ⇒ [H⁺] = [tex]10^{-5.6}[/tex] = 2.5x10⁻⁶ M
- pH = 3.7 ⇒ [H⁺] = [tex]10^{-3.7}[/tex] = 2.0x10⁻⁴ M
Finally we calculate how many times higher is [H⁺] when pH = 3.7 than when pH = 5.6.
- 2.0x10⁻⁴ / 2.5x10⁻⁶ = 80
Answer:
1. 7 (a neutral solution)
Answer: 10-7= 0.0000001 moles per liter
2. 5.6 (unpolluted rainwater)
Answer: 10-5.6 = 0.0000025 moles per liter
3. 3.7 (first acid rain sample in North America)
Answer: 10-3.7 = 0.00020 moles per liter
The concentration of H+ in the Hubbard Brook sample is 0.00020/0.0000025, which is 80 times higher than the H+ concentration in unpolluted rainwater.
Explanation: -
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.