At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Ask your questions and receive precise answers from experienced professionals across different disciplines. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Answer:
pH = 7 ⇒ [H⁺] = 1.0x10⁻⁷ M
pH = 5.6 ⇒ [H⁺] = 2.5x10⁻⁶ M
pH = 3.7 ⇒ [H⁺] = 2.0x10⁻⁴ M
H⁺ concentration in the Hubbard Brook sample is 80 times higher than in unpolluted rainwater.
Explanation:
To answer this problem we need to keep in mind the definition of pH:
- pH = -log[H⁺]
Meaning that after isolating [H⁺] we're left with:
- [H⁺] = [tex]10^{-pH}[/tex]
Now we proceed to calculate [H⁺] for the given pHs:
- pH = 7 ⇒ [H⁺] = [tex]10^{-7}[/tex] = 1.0x10⁻⁷ M
- pH = 5.6 ⇒ [H⁺] = [tex]10^{-5.6}[/tex] = 2.5x10⁻⁶ M
- pH = 3.7 ⇒ [H⁺] = [tex]10^{-3.7}[/tex] = 2.0x10⁻⁴ M
Finally we calculate how many times higher is [H⁺] when pH = 3.7 than when pH = 5.6.
- 2.0x10⁻⁴ / 2.5x10⁻⁶ = 80
Answer:
1. 7 (a neutral solution)
Answer: 10-7= 0.0000001 moles per liter
2. 5.6 (unpolluted rainwater)
Answer: 10-5.6 = 0.0000025 moles per liter
3. 3.7 (first acid rain sample in North America)
Answer: 10-3.7 = 0.00020 moles per liter
The concentration of H+ in the Hubbard Brook sample is 0.00020/0.0000025, which is 80 times higher than the H+ concentration in unpolluted rainwater.
Explanation: -
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.